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Motions in a Bose condensate: IV. Axisymmetric solitary 
waves 

C A Jones and P H Roberts 
School of Mathematics, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 
7RU, England 

Received 21 December 1981 

Abstract. Axisymmetric disturbances that preserve their form as they move through a 
Bose condensate are obtained numerically by the solution of the appropriate nonlinear 
Schrodinger equation. A continuous family is obtained that, in the momentum (p)-energy 
( E )  plane, consists of two branches meeting at a cusp of minimum momentum around 
0.140 P K ~ / C ’  and minimum energy about 0.145 p ~ ~ / c ,  where p is density, c is the speed 
of sound and K is the quantum of circulation. For all larger p ,  there are two possible 
energy states. One (the lower branch) is (for large enough p )  a vortex ring of circulation 
K ;  as p + m  its radius G - ( ~ / T K ) ” *  becomes infinite and its forward velocity tends to 
zero. The other (the upper branch) lacks vorticity and is a rarefaction sound pulse that 
becomes increasingly one dimensional as p +a; its velocity approaches c for large p .  The 
velocity of any member of the family is shown, both numerically and analytically, to be 
aE/ap, the derivative being taken along the family. At great distances, the disturbance 
in the condensate is pseudo-dipolar (dipolar in a stretched coordinate system); the strength 
of the pseudo-dipole moment is obtained numerically. Analogous calculations are presen- 
ted for the corresponding two-dimensional problem. Again, a continuous sequence of 
solitary waves is obtained, but the momentum per unit length p and energy per unit length 
E have no minima. For small forward velocities, the wave consists of two widely separated 
parallel, oppositely directed line vortices. As the forward velocity increases the wave 
loses its vorticity and becomes a rarefaction pulse of ever increasing spatial extent but 
ever decreasing amplitude. As its velocity approaches c, both p and E tend to zero, and 
Elp + c. 

1. Introduction 

This paper takes up questions left unanswered in the first of the three previous papers 
in this series, one devoted to the flow of an imperfect Bose gas (Roberts and Grant 
1971, Grant 1971, Grant and Roberts 1974). In that paper the structure, velocity 
U, momentum (impulse) p ,  and energy 8 of a large vortex ring were determined 
asymptotically in the limit in which the radius (3 of the ring is infinite. It was conjectured 
there (as it was later by Huggins 1971, Ichiyanagi 1979) that, as for the classical 
vortex ring (Norbury 1972, 1973), these vortices are extreme members of a sequence 
that probably extends to zero (3. It was clear however that, once (3 became comparable 
to the healing length (that determines the core radius of the large ring), it would 
be impossible to use asymptotic methods: numerical integration would be the only 
recourse. 

In so far as a condensate is a qualitatively faithful model of superfluid helium, 
considerable interest attaches to determining the entire vortex sequence, for its 
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members define possible states that can be excited in helium. The large vortex ring 
was, for instance, long ago experimentally detected by Rayfield and Reif (1964). 
There has also been the suggestion that such a vortex branch should merge con- 
tinuously with the phonon-roton dispersion curve. The roton could then, as Onsager 
conjectured, be pictured as 'the ghost of a vanished vortex ring' (see Donnelly (1974) 
for the history of this idea). 

Even those who feel that the condensate is too crude a model of helium II to be 
a reliable guide in these matters, will concede that the new solutions to the nonlinear 
Schrodinger equation which this paper presents are of interest when so few have been 
derived. Our axisymmetric solutions are, as far as we are aware, the only completely 
solitary wave solutions known, i.e. disturbances that are form preserving and vanish 
with distance in all directions from the centre of the wave. 

The imperfect Bose condensate is governed by equations that were derived by 
Gross and by Ginzberg and Pitaevski. In a Hartree approximation, the single-particle 
wavefunction $(x, t) for the N bosons of mass M that fill the volume V obeys the 
nonlinear Schrodinger equation 

O*1*l2 
. a$ h2 1h-=--V2*+ w 

at 2~ 

where WO is the strength of the assumed S-function repulsive potential between bosons. 
With E, the average energy level per unit mass of a boson, we write 

+b = exp(-iMEvt/h)V (1.2) 
so that by (1.1) 

We cast this in dimensionless form by the transformation 

h 
(2M2E,)'12 

X-, t+- 
2MEv 

where pm = MEv/ WO, giving 

2i a*/at = -v**-*(I - \ * I2 ) .  

(1.3) 

(1.4) 

The hydrodynamic interpretation of (1.4) will often be useful. This is obtained 
from the Madelung transformation 

* = R  eiS (1.5) 
where R and S are real. Substituting into (1.4), separating real and imaginary parts, 
and introducing fluid density p and fluid velocity U by 

p = R 2  u = v s  (W, (1.7) 

we recover the usual mass continuity equation, 

aplat + v (pu) = o (1.8) 

and a less usual Bernoulli equation involving a quantum potential 

as/at+iu2+i(p -l)-$p-1/zv2p1/2= 0. (1.9) 
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It is worth noting for future reference ( 0  2) that the actual equation of motion, obtained 
by taking the gradient of (1.9), is 

where the stress tensor Zii is (Hills and Roberts 1977) 

Xij=[a(l-p2)+3(Vp 1/2 ) 2 +2p 1 l / Z V Z  p 1/2 IS,---. aP'I2 aP'/2 
axi axj 

(1.10) 

(1.11) 

It is obvious from (1.10) that Zii is arbitrary to an additive constant tensor, and for 
convenience we have taken this to be $3, in order that Zii vanishes at infinity where 
p = 1. Other choices would not affect our results. 

According to (1.7), the flow is irrotational and by (1.5) the velocity potential S is 
single valued up to an arbitrary multiple of 27r, it being always necessary that Y be 
single valued. Of particular interest to us are curves on which Y possesses a simple 
zero, and round which, therefore, S increases or decreases by 27r. These define vortex 
lines with a single unit of circulation, 27r, or K = h/M in dimensional units. Such 
curves can only be closed, or terminate on the walls of the container. 

In what follows we seek solitary wave solutions of (1.4), i.e. solutions that satisfy 
two conditions. First, they are form-preserving: for each value of a dimensionless 
wave speed, U, we have 

w x ,  Y ,  2, t )  = w ,  Y ,  77) (1.12) 

where q = z - Ut. Now 

and (1.4) for instance gives (at t = 0, say, where 77 = z )  

(1.13) 

(1.14) 

Second, the disturbance associated with the wave must vanish at great distance, where 
the fluid is left undisturbed for our three-dimensional solutions 

P+ 1 1x1 -* 00. (1.15) 

(Note Y =  1 obeys (1.4) and (1.15) and implies that p = 1 and U = 0.) The significant 
point about (1.15) is that it applies for all directions of x. 

It is evident from (1.1 1) that the fluid is compressible. Indeed, 'in the bulk' (regions 
far from walls and vortices) where gradients of p are negligible, (1.9) or (1.10) show 
that the pressure P is (apart from a constant) proportional to p2. In general, therefore, 
no stream function exists for U. The solitary wave, however, is steady in the co-moving 
frame so that a stream function exists for pu:  

U =  U + p - ' V x A .  (1.16) 

For the axisymmetric waves on which we shall concentrate, A = @(s, z )$ / s  so that 

(1.17) 
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Here (i, @,2) are unit vectors in the direction of increasing cylindrical coordinates 
(s, Q, z) .  We will later present numerical solutions of (1.14) by means of density ( p )  
and streamline (a) surfaces. 

After defining quantities of interest in 02, such as pseudo-dipole moment m, 
momentum (impulse) p ,  and energy 8 of the solitary waves, we present the results of 
numerical integrations in 0 3. A continuous sequence of solitary waves is located. At 
one extreme lies the ring vortex of infinite radius, (3, as defined by a single curve 
(s = (3, z = 0) of zero Y. As (3 decreases so do m, p and %‘, but U increases. Eventually 
(3 becomes zero and all vorticity disappears, but the sequence continues as rarefaction 
pulses, U continues to increase, and p and 8 soon simultaneously reach a minimum 
and thereafter increase with U, becoming infinite together as U approaches the speed 
of sound. Thus, for each p greater than the minimum, there are two possible states, 
one on the ‘lower’ (vortex) branch and the other on the ‘upper’ (rarefaction pulse) 
branch. The relationship of the p +CO solutions of the upper branch to the Tsuzuki 
(1971) soliton is discussed in appendix 1, where it is shown that p -$rm in this limit. 
(As p + on the lower branch, we recover the classical result for vortices, p - 47“)  

The whole programme was repeated for two-dimensional solutions of (1.14), i.e. 
those for which Y = Y ( x ,  - Ut) and (1.15) is replaced by 

Y+ 1 ( x 2  + z 2 y 2  + Co. (1.18) 

The resulting sequence of solitary waves was found to be qualitatively different from 
the three-dimensional sequence. Now, p and 8 (defined per unit y length) have no 
minima, but decrease monotonically with increasing U, becoming simultaneously zero 
as U reaches the speed of sound. Solutions in this limit obey the Kadomtzev- 
Petviashvili (1970) equation and can be written down in closed form (see Manakov 
et a1 1977). At the other extreme (U  + 0) the solution represents a widely separated 
vortex pair mutually propelling each other in the z direction in obedience to Kelvin’s 
theorem. The larger U, the smaller their separation and, for all sufficiently small p ,  
vorticity is absent, as for the three-dimensional sequence. The solitary waves obtained 
by numerical integration are described in 9 4. All our results are summarised in 0 5 .  

2. Stretched dipole moment, impulse and energy for axisymmetric waves 

Clearly Y= 1 obeys (1.14) and (1.15). Neighbouring states are obtained by writing 

Y= 1+V= l + q ; + i Y l  (2.1) 

say, substituting into (1.14) and (1.15), linearising these with respect to Y’, and 
separating their real and imaginary parts. In this way we obtain 

2u av;/az = - v 2 q : + 2 ~ :  2 U aY:/az = v2*; (2.21, (2.3) 
where 

(Yi, Y;) + 0 for r = 1x1 -* 00. 

Thus 9: and TI obey 

(2.4) 

(v4 - 2v2 + 4 U’ a2/az2)(*:, 9;) = 0. (2.5) 
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We note that (2.5), though not (2.4), is satisfied by sinusoidal disturbances of 
wavenumber k, provided 

U = G ( 1  + $ k 2 ) l l 2 .  (2.6) 
This dispersion relationship for infinitesimal sound waves coincides with the usual 
Bogoliubov (1947) phonon spectrum. The solitary waves we seek below are all 
subsonic, i.e. U < J$. 

The second use to which we put (2.1)-(2.5) is to determine the asymptotic form 
of axisymmetric wave solutions for r -P CO, where the V4 term of (2.5) is negligible to 
leading order. This is tantamount to discarding the V2W: term in (2.2) to leading 
order, so that 

(2.71, (2.8) YI: = U aYI;/az v2*\III = 2 U a.\Ir:/az 

and 

(v2 - 2 U' a2/az2)(q:, YI;) = 0. (2.9) 
The gradient terms in (1.11) play no part at these great distances; compressibility is 
the origin of the 2 U' a2/az2 term in (2.9). In the usual way we make the transformation 

x ' = x ( l - 2 u 2 ) 1 / 2  y ' = y ( l - 2 u 2 ) 1 / 2  z ' = z  (2.10) 

which is real, since U < d;. This reduces (2.9) to Laplace's equation in (x', y', z') 
space. By (2.4) only the exterior harmonics are admissible, e.g. for axisymmetric 
disturbances we have, writing cos 6' z' /r '  and r '=  ( ~ ' 1 ,  

m 

'Pi = - m, (r')-fl-lPfl (COS 6') 
f l = O  

(2.11) 

where mo, ml, m2, . . . are the stretched monopole, dipole, quadrupole, . . . coefficients, 
the adjective 'stretched' being added to distinguish these coefficients from the usually 
employed coefficients of r-"-lPfl(cos 6) in an expansion of YII in inverse powers of r 
(an expansion which is  here not useful since supplementary terms r-"-'Pnt2(cos e), 
r-"-1P,+4(cos e), , . . would be required by (2.9)). 

We can obtain YIi from (2.11) by using (2.7). By symmetry, only odd n terms can 
appear in (2.11) for the solitary wave solution, and for sufficiently large r we may 
therefore write (replacing m l  by m and setting s = [(xz+ y )] 2 1/2 

) 

YIr- 1 + mU[2z2- (1 -2U2)s2][z2+ (1 -2u2)sz]-5'2 (2.12) 

YIj--mz[z2+(1 -2u2)s2]-3/2 (2.13) 

for r -P 00. For infinitely slow waves, such as the infinitely large vortex ring, m coincides 
with the customarily defined dipole moment of a ring vortex in an incompressible 
fluid. It was one of the objectives of the numerical work reported in 0 3 to determine 
m for each solitary wave obtained. We note that, in the fluid description of 9 1, (2.12) 
and (2.13) imply 

p -1+2mU[222-(1-2U2)s2][Z2+(1-2U2)s2]-5/2 (2.14) 

(2.15) 

(2.16) 

for r+m. The following observation is important to what follows. While YI is 

s - 2 . r r j - m z [ z 2 + ( 1 - 2 ~  2 1s 2 1 -3/2 

0 - -$us2+ m(1 -2U2)s2[z2+ (1 - 2u2)s2]-3/2 
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necessarily single valued, S is not. The integer j in (2.15) is needed whenever (as for 
the vortex-type solutions) one or more closed circles of zero P exist, since such circles 
of zero p essentially increase the connectivity of the fluid. But when no curves of 
zero p exist and the fluid occupies a simply connected region, we may write 

j = O  S-Vi for r + 00. (2.17), (2.18) 

Such, for example, is the case when a solid body (without trailing vortices) moves 
through the fluid (see below). 

We may use these asymptotic forms to prove that no non-trivial waves of permanent 
form exist that are completely stationary. If f = x / r  is the unit radial vector, it follows 
from (1.8)-(1.13) that 

(2.19) 

When this is integrated over Sm, the sphere at infinity, the surface integral on the 
left-hand side vanishes and we have 

1 
r = - [$(1 -p )2+  (f ’ vp1’2)2+p(f * U); * (U - U ) + p u  U]. 

(2.20) 

The left-hand side is positive definite, but the right-hand side vanishes when U = 0. 
Thus for stationary solutions p = 1 and f * U = 0, and axisymmetry then requires that 
U = 0. This proof can be generalised to other potential energies of interaction, as for 
example when the potential energy k(l-lP12)2 in (1.14) is replaced by any V(lPI2) 
that increases with 11 - IV\Ir1’1 away from a minimum at V = 1. 

By (2.14) the integral of 1 - p  over all space is non-zero, but the apparent violation 
of mass conservation is illusory, as we shall see below. This integral is also improper, 
i.e. its value depends on the shape of the volume V occupied by the fluid as the limit, 
V + Vm, of infinite volumes is taken. 

The occurrence of improper integrals in the theory of incompressible fluids is well 
known and understood. It arises there, as here, when we endeavour to evaluate the 
momentum (impulse) that should be assigned to a solitary wave such as a vortex. We 
can generalise this experience by adopting a well known way out of the difficulty (e.g. 
Batchelor 1967, 0 7.2). In the classical argument, the impulse p is calculated in two 
steps, first the relatively simple one of integrating the momentum pr of the flow interior 
to Yo, a very large sphere r = B (>>G), and second the conceptually more difficult one 
of assigning a momentum p E  to the flow exterior to that sphere. In computing the 
latter it is noted that the flow far from the vortex coincides with that which would 
exist were Yo the real physical surface bounding a solid sphere r = 9. The force 
exerted on that sphere as the velocity of the sphere is increased from 0 to U is easily 
calculated, and when integrated provides the momentum supplied by external agencies 
to bring the sphere from rest to its final state of uniform motion U, i.e. it gives pE 
and hence p = pI +PE. 
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The argument giving pE is hard to generalise for three reasons: first, it is evident 
from (2.16) that, though the spheroid 

Y: s = 93 sin 8 z = ( 1 - 2 ~ ~ ) ~ ’ ~ 9 3  cos8 (2.21) 

is for large 93 a streamline for one value of U, it is not a streamline for any other 
velocity of the body as it is accelerated from rest. Second, the stretched dipole moment 

6 = ; ~ 3 3 ( 1 - 2 ~ 2 ) 1 / 2  (2.22) 

required to make Y a streamline for velocity U, and the corresponding flow, are both 
so large for 93 >> 1 that the argument leading to (2.16) is invalidated. Third, healing 
of the wavefunction would generally occur on a solid body. If, for example, Y were 
an infinite potential barrier to the bosons, and p would be zero on Y and would 
rise to their bulk values in a healing layer of O(1) thickness surrounding 9. Such 
healing phenomena are of no interest for our present purposes. To overcome all these 
difficulties we consider de novo the problem of accelerating in the z direction from 
rest an axisymmetric body solid body B which for simplicity we suppose has an 
equatorial plane of symmetry, so that the flow it creates has the same symmetry (under 
z + -2) as the solitary wave. 

The force F required to accelerate B is given by 

(2.23) 

where d S  is the surface element drawn outwards from YB, the surface of B. Using 
(1.8), (1.10) and the fact that 

(U - U) dS=O on YB (2.24) 

where U is the velocity of B, we may rewrite (2.23) as 

(2.25) 

where Y is a surface far from and surrounding YB but moving with it, V is the volume 
between YB and Y, and d/dt = a/at + U V is the derivative following the motion of 
B. We may rewrite (2.25) as 

F = -dpI/dt + f (2.26) 

where 

and pI is the momentum of the fluid interior to V. Since p - 1 and U are O(r-3) for 
r + c o  we may, using (l.ll), replace (2.27) by 

fi = - J [$(p - 1 ) ~ j j  - P U ~ U , ]  dSj 
Y 

and (1.9) now gives to the same accuracy 

(2.28) 

(2.29) 
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In this way, we obtain for the only case in which we are interested (axisymmetric Y 
with f and U parallel to 02) 

F = -dp/dt P=PI+PE (2.30), (2.31) 

where 

and dS, = 2 dS. It is important to note that, since vorticity cannot be created during 
the acceleration of B from rest, there are no curves of zero 'P exterior to B, and we 
may use (2.17) and (2.18) to obtain 

(2.34) 

Let us consider what happens if we accelerate B from rest to velocity U in a finite 
time 7, and thereafter maintain B at that velocity. The momentum transferred to the 
fluid can, at any instant t, be obtained by integrating (2.23) up to time t. Because of 
compressibility effects, that momentum will spread from B at a finite rate. Thus, even 
though the p of (2.31) will be unambiguously known at t, the division of p between 
PI and pE will depend on the speed of sound c, the distance 5% of Y from B and so 
forth. If we wait a time long compared with 5%/c and 7, the flow in Y will reach a 
steady state and at that time (2.32)-(2.34) will have attained their final steady-state 
values that can be obtained by solving (1.14) and (1.15) for constant U. The flow 
outside Y will, in an unbounded fluid, never reach a steady state there being alwayst, 
at sufficiently great distances, transients that contradict the asymptotic laws (2.12)- 
(2.18). Nevertheless, (2.32)-(2.34) will be uniquely given by those laws and by writing 

we obtain from (2.30) and (2.31) 
, r  
1 P=% J [('P* - 1)V'P- (9- l)V'P*] d V. 

V, 

(2.35) 

(2.36) 

We have here appealed to the absolute convergence of the integral to replace "lr by 
V,, i.e. all space. Though (2.32)-(2.35) are all improper integrals, (2.36) is absolutely 
convergent. 

In this paper we are more concerned with the momentum of a solitary wave than 
with that associated with the flow round a moving solid body. Since the asymptotic 
form of 'P for r + 00 is the same in each case, integral (2.36) is unambiguous, and the 
contribution (2.35) made by pI to p is clearly the momentum associated with the wave 
inside V. Applicability of (2.36) is questionable only in its reliance on (2.34) for pE. 
Against this two objections may be levelled, one trivial and one more profound. The 
trivial one is that solitary waves may possess vorticity and that, if so, S will not be 

t If the fluid is of finite extent, sound waves reflected from the walls will eventually enter Y again, and 
will carry the information about whether the container is free to move, or whether further momentum has 
been transferred at the walls to keep it at rest. After a sufficient number of repeated reflections, the fluid 
may reach a steady state. Asymptotic laws like (2.12)-(2.18) would then be valid with additional terms 
arising from the mass motion of the system. We shall not consider these complications. 
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single valued: reliance of (2.17) and (2.18) to pass from (2.33) to (2.34) seems 
misplaced. We may answer this by noting that in both cases (2.33) represents the 
momentum of the flow outside V, and that (as t +m after the motion has been set 
up) this has the identical pseudo-dipolar form. Form (2.34) should therefore be true 
for both, and is preferable to (2.33) because it is unambiguous. 

This answer touches on the more profound objection to (2.36). Irrespective of 
the outgoing waves outside 9, born during the acceleration of B, we know that (2.34) 
correctly gives the momentum outside 9' when a solid body is accelerated from rest. 
It is conceptually a much more difficult matter to visualise a sequence of operations 
that lead from an initial state of no motion to a final state of a solitary wave. Indeed, 
as we have seen above, no motionless solitary wave exists that could provide a starting 
point. It is now unclear whether (2.34) gives pE correctly. For this reason we feel it 
is safer to call the p calculated from (2.36) not the momentum of the solitary wave 
but its 'impulse'. That (2.36) enjoys a special significance in the theory is corroborated 
by a variational argument below. 

It is possible to relate the momentum p directly to the stretched dipole moment 
m, defined in (2.12) and (2.13). This was the preferred method used in § 3 to find 
m. If w denotes solid angle and dS, = S dS 

z 
47rm = m j9du' = m 19d( 

= I V [ V x (  @+;Us2 )e] d V - ( l - 2 U 2 ) j  'PidS, 
2 9 

= I,[Pu, - U(1 -p)l d V  - (1 - 2U2) Yi dS, 
9 

= p +  U j v (  1 - I P / 2 + 2 U ~ )  a*, d V  

= p  + U [l - l'P12-V2'Pr- (1 - l'P12)'Pr] dV. (2.37) 

We have here made use of (1.14), (1.17), (2.13), (2.16) and (2.36). In the limit 
V +  m, (2.37) gives 

I, 

47rm = p +$Ujvm (1 - ('PI2)(2 -'P-'P*) d V. (2.38) 

Again, the integral is properly convergent. Equation (2.38) confirms the classical 
value, 47rm, for p in the large vortex ring limit (U + 0), and also shows that at the 
other extreme ( U +  4) of the Tsuzuki-type solitary waves p -$.rrm; see appendix 
1. Result (2.38) is also well confirmed by the numerical integrations of P 3. 

The final quantity of interest is the energy 8 of the excitation. It is convenient to 
restore dimensional units temporarily. We form 8 by subtracting the energy of an 
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undisturbed system of the same mass, for which Y = Y,, = constant everywhere, from 
the energy of the system with a solitary wave, in which Y+ ‘Pm = constant as r + a). 
As Amit and Gross (1966) and Roberts and Grant (1971) have stressed, Y m  and Vu 
differ slightly but significantly. 

Equality of mass in the two systems requires 

(2.39) 

where U is the volume of V. It follows that 

h2 WO WO 
=-!vlVY12dV+-] 2M 2 v  (Y&-lYlz)2 dV--(YL-Yt)2u. 2 (2.40) 

By (2.14), the integral on the left of (2.39), i.e. the integral of 1 - p  in dimensionless 
units, is improper, but in the limit u -P CO it is finite for all shapes of V. The fact that 
it is non-zero might raise qualms about our earlier arguments about impulse: returning 
to the accelerated body B, we recognise that asymptotic laws such as (2.14) in 
dimensional units give p + pm = lYmI2, for r -P CO and not p + pu = lYu12, the undisturbed 
density. Although the difference is small, namely O(l/u), it might seem that the body 
signals its change of motion to great distances faster than the speed of sound, in fact 
instantaneously. This is not true however. Ahead of the advancing sound waves set 
up by the acceleration of B, p = pu, but behind that front p will tend to pm for large 
(fixed) r ;  mass conservation is not violated. The same distinction is, it seems to us, 
appropriate for the solitary wave solutions. 

Since the integral on the left of (2.39) is finite, the final term of (2.40) is O(l/u) 
and will vanish in the limit U + a). The remaining integrals are completely convergent. 
Reverting to dimensionless units, we have 

(2.41) 

Two points may be noted about (2.41). First, we may replace 9 by q- 1 in the 
first integral of (2.41), integrate by parts (discarding the surface integral which vanishes 
by (2.12) and (2.13)), and appeal to (1.6) to obtain the general result 

(2.42) 

This was used in § 3 as a check on numerical accuracy. Second, we may perform the 
variation 

Y+Y+i3Y (2.43) 

in the integrals (2.36) and (2.41). After discarding surface integrals that vanish 
provided 8 q  -P 0 for r + a), we obtain 

(2.44) 
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(2.45) 

Thus, we see that stationary values of k?, for fixed p and all PP, require the Euler 
equation (1.14) and its complex conjugate to be satisfied, with U as Lagrange 
multiplier. Also we see that, if PP is the variation that takes one member of the 
sequence of solitary waves to the adjacent member, 88 = USp. In other words 

U = aE/ap (2.46) 

the derivative being understood to be taken along that sequence. Because of a 
non-vanishing surface integral in Sp,, this conclusion would not follow if instead of 
(2.36) we had used pI for p ,  as given by (2.35). This gives added support to the 
argument that led to (2.36), for it is commonly held that (2.46) is a sine qua non for 
quasi-particle excitations such as the solitary waves. We may also note that (2.46) is 
obeyed by the sequences of classical vortex rings in an incompressible fluid (Roberts 
1972, Norbury 1973). Equation (2.46) was well confirmed by the numerical results 
of §§ 3 and 4). 

3. The numerical solutions for axisymmetric waves 

We now address the problem of constructing axisymmetric solutions to the nonlinear 
system (1.14) subject to boundary condition (1.15). In view of the asymptotic 
expansions (2.12) and (2.13) at infinity, we introduce stretched variables r' and 8' 
based on (1.10). Also, since r' ranges from 0 to 00, we introduce a new independent 
variable 

r'= r'/(R +r ' )  

where R is constant. The domain of integration is now finite: O<r '<  1, 0<8'<.rr. 
This more than compensates for the substantial complexity added to (1.14) by the 
transformation. 

We expand qr and 'Pi in double Chebyshev-Legendre series. Symmetry under 
the e'-* .rr - 8' transformation suggests that we take 

(3.2) 

where the T*m(r') are Chebyshev polynomials reduced to the [0,1] interval: see for 
example Fox and Parker (1968). The boundary conditions at r'= 0, 1 and at 8' = 0, .rr 
are ones of regularity that are already implicit in (3.1) and (3.2). No additional 
information need be incorporated at these boundaries. We are, however, required 
to evaluate a number of integrals, such as the energy integral (2.41), which now has 
the form 

Provided the solutions obey (2.12) and (2.13), these integrals will converge at the 



2610 C A  Jones and P H Roberts 

i = 1 limit. For these asymptotic forms imply 

(3.4) 

Even if these conditions were not applied explicitly they would be satisfied approxi- 
mately, but the errors arising from the finite truncation of the series in (3.1) and (3.2) 
would lead to difficulties. These are best avoided by imposing (3.4) directly on the 
expansions (3.1) and (3.2), so obtaining 5 N + 6  relations between the coefficients am" 
and bm". We obtain a further 2 N  + 2 relations from the conditions 

a q r / a i  *Jli-*O i-* 0. (3.5) 

The remaining 2M(N + 1) - (5N + 6) equations are obtained by collocation at the 
zeros of the appropriate Chebyshev and Legendre polynomials. The total of 2(M+ 
1)(N + 1) nonlinear algebraic equations are solved by Newton-Raphson iteration. 

The two input parameters are U, the speed of the solitary wave, and the scaling 
factor R. The integrals of the motion should be independent of R, and this was found 
to be the case provided R was representative of the length scale over which the 
solution varies. If R is much greater than or much less than this, the number of 
polynomials required for accurate answers becomes large. For 0.5 < U < 0.65, any 
value of R in the range 2 < R <4 gave the same results to three figure.accuracy. At 
U = 0.69, R in the range 5 < R < 7 gave the same results to that accuracy but, for 
U 6 0.4, N needs to be larger to obtain results correct to three figures. 

The Newton-Raphson iteration procedure requires an initial approximation for 
the solution at the U selected. This was provided by the asymptotic theory for the 
large circular vortex given by Grant and Roberts (1974), which is valid for U+O. 
Once an accurate numerical solution had been found for small U, U was slowly 
increased until the complete family, whose properties are summarised in table 1, had 
been obtained. The integrals were evaluated by Gaussian quadrature. 

In table 1 we show Ep as calculated from (2.41), p from (2.42) and m from (2.38). 
The value of p was checked by computing (2.32) and (2.33), and m was compared 
with the estimate obtained by directly evaluating 

Table 1. 

U % P m w 

0.4 
0.5 
0.55 
0.60 
0.63 
0.66 
0.68 
0.69 

129.0 
80.7 
66.5 
56.4 
52.3 
50.7 
53.7 
60.0 

233.0 
123.5 
96.5 
78.9 
72.2 
69.6 
74.1 
83.2 

22.6 3.36 
13.0 2.31 
10.6 1.82 
8.97 1.06 
8.37 - 
8.20 - 
8.80 - 
9.92 - 
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and applying (2.13). A further check was made by differencing the results of table 1 
to obtain A E / A p  and comparing this with U ;  see (2.46). Yet another test was to 
compare results at small U with the asymptotic theory of Grant and Roberts (1974). 
All these checks on accuracy were satisfactorily survived by the numerical solution. 

As a further independent check, a completely different programme was constructed 
that used a finite difference method to solve (1.14) and (1.15). Stretched cylindrical 
polar coordinates were introduced, related to s and z by 

s* = s / ( R  +s) 2 = z / ( R  + 2). (3.6) 

The transformed (1.14) was expressed in second-order finite difference form, and the 
resulting nonlinear equations were solved by Newton-Raphson iteration, using a 
sparse matrix inversion routine. The agreement of the results with those obtained by 
the first method was extremely satisfactory. One disadvantage of the finite difference 
method is that it is almost impossible to obtain a direct estimate of the stretched 
dipole moment from the behaviour of the solution near s* = 1, 2 = 1. The correspond- 
ing step in the series expansion method was simple to take. 

The stream function Q, defined by (1-17) was also obtained. This function measures, 
in the frame co-moving with the vortex, the flux of fluid through the surface of 
revolution formed by rotating the streamline concerned about the z axis: naturally, 
@ = 0 on s = 0, and Q, on other streamlines can be found by integrating along r' constant. 

Contours of p and Q, are shown in figure 1 in four cases: U = 0.3, 0.55, 0.66 and 
0.69. In each case the box size is 30 x 18 non-dimensional units. As U increases 
from 0 to approximately 0.62, the dimension of the 'vortex', as judged by the closed 
Q, = 0 streamline, diminishes monotonically. At U = 0.62 it disappears entirely, and 
the velocity potential is thereafter single valued, without the necessity for branch cuts. 
The energy, impulse and stretched dipole moment up to now decreased steadily. This 
soon ceased, however. When U = 0.657, 8 and p simultaneously attained minima qf 
approximately 50.7 and 69.6; here m =8.20. As U increased beyond 0.657 to Jf, 
the dimensions of the wave began to increase, the s scale doing so rather more rapidly 
than the z scale. Simultaneously the density approached unity everywhere. The scale 
increases were so large, however, that 8 and p increased without limit as U+J$.  
It is interesting to note that in all cases regions of positive density excess p - 1 exist, 
although such excesses disappear both as U + 0 and U -* 4. 

As can be seen from table 1, 8 and p have smooth minima as functions of U. 
When these results are plotted in the p 8  plane however, there is a cusp at the minima; 
see figure 2. The existence of a cusp, rather than a smooth minimum, is a consequence 
of the established non-existence of solutions with U = aE/ap = 0; see (2.20) and (2.46). 
Also shown in table 1 is the radius, G, of the zero /PI circle in the solution (when 
such a curve exists). 

Although (see P 1) the condensate cannot be expected to model helium with 
quantitative accuracy, it is of some interest to place our results on the dispersion 
diagram for superfluid 4He. To do this, we must re-interpret our results in dimensional 
form. There is no doubt that we should scale so that the unit of circulation h/M is 
9.967 x cmz s-l and the bulk density is about 0.145 g cm-3 (Woods 1972). Our 
third choice is more contentious. We can either make the healing length agree with 
(for example) the value of 1.13 A given by Padmore (1972), or we can choose the 
speed of sound to conform with the experimental value, e.g. 2.3 x lo4 cm s-' as given 
by Chase (1953). The latter course would imply a healing length of only 0.49A. 
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Figure 1. Equidensity surfaces (left) and streamlines (right) for four axisymmetric solitary 
waves, moving with dimensionless velocities U = 0.3 (top), 0.55, 0.66 and 0.69 (bottom). 
The contours are marked with density p (left) and with the value of the streamfunction 
0 (right), both in the dimensionless units defined in 8 1. 
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Figure 2. Showing the momentum-energy curve of the axisymmetric solitary wave sol- 
utions. Dimensional units are based on a density p of 0.145 g ~ m - ~ ,  and a quantum of 
circulation K = h / M  of 0.9967 x cmz s-'. On curve A, the healing length was taken 
to be 1.13 A; on curve B, the same results are given based instead on the sound speed 
of 230 m s-'. The observed dispersion curve C is shown for comparison purposes: for 
this c = 238 m s-'. 

Since it was not clear to us which alternative was to be preferred, we give both curves 
in the p 8  diagram of figure 2, on which the excitation spectrum obtained by Woods 
(1972) is also shown. In neither case is the cusp far from the experimental curve. 

4. Two-dimensional solutions 

Particularly in view of interest in thin helium films, we examine briefly here the 
analogous solutions in two dimensions, namely the family of solitary waves in which 
q = V(x, z - Ut) and which also starts at U = 0 with the widely separated vortex pair, 
corresponding to zeros in at (0, &). 

The analysis proceeds much as before. (1.17) is replaced by 

U = U2 + p-'v x (@jq 

*i - -mz[ z2  + (1 - 2U2)x2]-l 

qr - 1 + m( U[Z2 - (1 - 2U2)X2] - $mz2}[z2 + (1 - 2 u  ) x  3 

(4.1) 
and the asymptotic forms corresponding to (2.12), (2.13), (2.16) are 

(4.2) 

(4.3) 

(4.4) 

2 2 -2  

- -Ux + m(1- 2U2)X[Z2 + (1 - 2u2)x2]-' 

for ( x ~ + z ~ ) ~ ' ~ +  00. The proof that U = 0 solutions do not exist follows from, and 
relies on, (4.2) and (4.3). (Evidently U = 0 for an isolated vortex line, for which a 
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monopole term replaces (4.2).) The derivations of (2.36) and (2.41) are changed only 
in that d V is replaced by dx dz, and provide respectively the impulse and energy per 
unit y length of the solitary wave. With that interpretation (2.42) and (2.46) are 
unchanged. The argument leading to (2.38) is readily modified to give 

27rm (1 - 2U2)-1/2 = p +$U[ (1 - 1912)(2 -*-9*) dx dz. (4.5) 
V, 

The second of the two numerical methods described in 0 3, the finite difference 
method with stretched coordinates x* and 2 defined as in (3.6), was used to construct 
table 2. The quantities 8, p and m were computed by numerical evaluation of the 
two-dimensional equivalents of (2.41) and (2.42), together with (4.5). As for the 
circular ring, 3 decreases to zero as U is increased, and subsequently vorticity is 
absent. There is, however, a striking difference thereafter from the axisymmetric 
solutions. The impulse and energy per unit length have no minima, and as U + G ,  
the speed of sound, both p and 8 tend to zero, with 8 - p / h  Indeed the excitations 
have slightly lower energy/momentum than the phonons. For the phonons follow the 
Bogoliubov spectrum (2.6) so that 

kZ+. . . k + O  (4.6) 
8 1 1  
P 
- = U - z + 8 J 2  

i.e. zP/p exceeds 1/42, while for our solitary waves we have 

(4.7) 

i.e. 8 / p  is less than 1/42. There seems to be no obvious reason why these states 
should not be thermally populated to a slightly higher density than the phonons and 
make a slightly greater contribution to the low-temperature specific heat. (We are 
grateful to Professor S Putterman for this observation.) 

Table 2. 

U 8 P m & 

0.3 10.0 19.6 4.19 1.75 
0.4 8.16 14.1 3.55 0.89 
0.5 6.40 10.2 3.16 - 
0.6 4.49 6.71 2.91 - 
0.65 3.28 4.77 2.84 -- 
0.68 2.29 3.28 2.83 - 
0.69 1.83 2.60 2.83 - 

Results such as (4.7) are derived from the asymptotic theory developed in the 
appendix, which capitalises on the great increase in scale of the wave in the limit 
U + 1/42, which occurs for the two-dimensional solutions as it did for the axisymmetric 
solutions. Unlike the latter case however, the governing equation can be solved in 
closed form. In this way we obtain (4.7) and also find that m +242 for U +  1/42. 
In the opposite limit U +  0 of the widely separated vortex pair, m + p / 2 ~ .  The 
complete p 8  curve is shown in non-dimensional units in figure 3. 
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P 

Figure 3. Showing the momentum-energy curve of the two-dimensional ( x z )  solitary 
wave solutions, using the dimensionless units defined in 5 1 .  Momentum apd energy here 
refer to unit y length. The broken line gives the speed of sound ( E  = p /  J2). 

5. Conclusions 

A complete family of axisymmetric solutions for the nonlinear Schrodinger equation, 

a\Ir h’ 
at 2~ 

ih -= --v’Y+ w ~ ~ ~ ~ ’ Y - M E , Y  

has been derived numerically. These are waves of permanent form moving with a 
velocity U which has also been determined numerically, i.e. 

w, Y ,  2, t )  = W X ,  Y ,  2 - Ut) (5.2) 

where Oz is the axis of symmetry. These waves are solitary since 

Y + (ME,/ w ~ ) ~ ’ ’  = &’(say) as r-*m (5.3) 

i.e. at great distances the solution approaches the undisturbed state Y = p z ’ ,  which 
is an exact solution of (5.1). 

The solutions are related to superfluidity, as modelled by the imperfect Bose 
condensate, in which the single-particle wavefunction Y obeys (5.1), with M the mass 
of the boson, WO the strength of a &function repulsive potential between bosons, E, 
is the energy level per unit mass of a boson in the undisturbed state in which the mass 
density is pm everywhere. Expressions for the momentum (or impulse) p and energy 
Ep of the excitations were obtained, and it was demonstrated that their velocity is the 
derivative a8/ap, taken along the sequence. Since (as was shown) U cannot be zero, 
p and 8 must achieve their minima simultaneously. This was confirmed numerically, 
and the corresponding cusp was located in the p 8  plane. In that plane the sequence 
consists of two branches meeting at the cusp. For each momentum greater than its 
minimum, pmin, at the cusp, two states of different energy are possible. The lower 
branch (for all p > p o ,  say approximately 0.62) consists of vortices. The smaller the 
p the smaller their radius &, the faster they move, and the smaller their spatial extent. 
For p = po, G = 0. For pmin < p C po vorticity is absent, and the disturbance resembles 
a rarefaction pulse. As p increases along the upper branch, the spatial extent of the 
pulse increases in all directions, particularly in directions perpendicular to the sym- 
metry axis; at the same time the amplitude of the disturbance becomes smaller, but 
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not sufficiently rapidly to prevent p and 8 from increasing indefinitely. As p -P CO 

along the upper branch U+c,  the speed of sound The disturbance is then 
almost one dimensional, i.e. dependent on z alone. The very existence of PO may 
have interesting implications for nucleation theory since, as p crosses PO, a quantum 
of circulation is smoothly created or destroyed. 

One of the objectives of the present paper was to clarify Onsager’s concept of the 
roton as ‘the ghost of a vanished vortex ring’. It was hoped to show that as U increased 
from zero, the large vortex ring would become more localised, vorticity would disap- 
pear, and the resulting sound pulse would merge, in the p 8  plane, with the phonon 
branch of the dispersion curve. Although in the shrinkage of the disturbance and the 
vanishing of &, this expectation has been fulfilled, the subsequent increase of p and 
8, and indeed the very existence of the upper branch, came as a surprise. The existence 
of a minimum of p and 8 seems to rule out merging of the sequence with the phonon 
branch. 

It seems to us that the idea of the roton as a ghostly vortex ring could best be 
saved in one of two ways. First, it might be demonstrated that the Bose condensate 
is too crude a model of helium to be reliable, and that in a better model our sequence 
would have no minimum momentum (other than zero). Second it might be shown 
that, if our sequence intersects the phonon-roton dispersion curve (as in curves B and 
C on figure 2), level crossing phenomena would reconnect the curves so that our lower 
branch joined smoothly to the observed dispersion curve (Turkevich 1981). In this 
context it is interesting to note that our lower branch always (i.e. no matter what 
values of a or c we choose; see 0 3) intersects the line 8 = cp. To take these speculations 
further is clearly beyond the scope of this paper. 

In addition to these axisymmetric solutions, a complete family of two-dimensional 
solitary waves was located in 0 4. It is hoped that this will be of at least qualitative 
usefulness to those interested in helium films. The family shares similarities with the 
axisymmetric sequence, e.g. vorticity is absent for all sufficiently large U. At this end 
of the sequence, the solution represents an oppositely directed pair of parallel line 
vortices, whose separation 2; (-~/27rU, for V+O) becomes infinite as U+O. The 
striking difference from the axisymmetric family occurs at the other end of the 
sequence. In two dimensions p and 8 (now defined per unit length) have no minima, 
and vanish together as U approaches the speed of sound. The sequence thus merges 
tangentially with the phonon branch of the dispersion curve in the pi9 plane. 
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Appendix 1. The p + 00 limit on the upper branch 

On substituting 

q = f + i g  
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into (1.14) and equating real and imaginary parts, we obtain 

2 u  ag/at = -v2f+f(f2 + gz - 1) (A21 
-2u af/az = -vzg + g(f2 + g2 - I). 643) 

f = l + ~ ~ f ~ + & ~ f ~ + .  . . (-44) 

(A5) 

U =  U0+E2U1+E4U2+. 1 .  (A6) 

7 = E 2 y  f = E t .  (A71 

Now seek solutions of the form 

3 g=Egl+E g2+ . . .  

and stretch the independent variables by writing 

On substitution into (A2) and (A3) the leading order parts are found to be O(E’) 
and O(e3) respectively, and give 

afl a2g1 -2 U0 - = - 2 + (2 f 1 + g:)gl 
a5 af 

whence 

u0 = 4 2fi + g: = J3 agl/ai. (A8), (A91 
To leading order, the impulse (2.36) of the wave is by (A9) (with U = E ~ S )  

To the same order (2.42) shows that 

8 =  Uop 

and by (2.38) and (A9) 

3P 
2 

4 r m = p + U o k I ( % )  E u d u d f = -  2 

by (A10). Thus, consistent with the result of 0 3, 

(A12) 8 p = j r m .  

To this order f l  and gl are undetermined; we know only that they are related by 
(A9). More information is obtained at the next order, namely, O(e4) in (A2) and 
O(e5) in (A3). These give 
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where V’,= a2/at2 + a2/aq2. If we define 

we see from (A2)2 and (A3)2 that 

Consistency of these equations demands that 

a 1 a3g1 3 agl 242 u1 a2gl- VHg, + - [ - -- - ($1 = 0. 
a i  a i  2 a i 3  J 2  

The one-dimensional form (VL=O)  of this equation has been obtained and 
integrated by Tsuzuki (1971) to give a form of the Korteweg-de Vries equation. The 
axisymmetric solutions of (A17), in which gl = g1(q 5) where (T = E’S, appear (for 
E + 0) to provide the asymptotic p + 00 form of the solution on the upper branch of 
the waves determined numerically in 9 3. 

The two-dimensional form of (A17) governing gl = gl(& 5) is the Kadomtsev- 
Petviashvili (1970) equation to which simple solutions have been obtained by Manakov 
et al (1977). The particular solution relevant to the two-dimensional solitary waves 
discussed in 9 4 is 

g1= -2JZi/(e2+f2+$) U1 = -1/2Jz (A18), 0419) 

f1= - 2 / ( t 2 + i 2 + 3 .  

so that 

The scaling (A7) for x and z (there is no dependence on y so the second of (A7) is 
irrelevant) and the expressions (2.36) and (2.4 1) (appropriately modified by replacing 
d V  by dx dz) show that the momentum and energy per unit length are proportional 
to E .  In fact ( A l l )  and (AM) give 

8 = !T& = p/&. (A211 

This is consistent with the numerical results of § 4. 
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